This post explains how to convert numpy arrays, Python Lists and Python scalars to
to Tensor objects in TensorFlow. TensorFlow provides tf.convert_to_tensor
method to convert Python objects to Tensor
objects.
tf.convert_to_tensor(
value, dtype=None, dtype_hint=None, name=None
)
tf.convert_to_tensor
import tensorflow as tf
import numpy as np
np_array = np.array([[1, 2, 3], [4, 5, 6]])
print("numpy array")
print(np_array)
tensor_1 = tf.convert_to_tensor(np_array, dtype=tf.int32)
print("tensor from numpy array")
print(tensor_np)
numpy array
[[1 2 3]
[4 5 6]]
tensor from numpy array
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
tf.convert_to_tensor
import tensorflow as tf
import numpy as np
py_list = [1, 3, 4, 5, 6, 7]
print("python list")
print(py_list)
tensor_2 = tf.convert_to_tensor(py_list, dtype=tf.int32)
print("tensor from python list")
print(tensor_2)
python list
[1, 3, 4, 5, 6, 7]
tensor from python list
tf.Tensor([1 3 4 5 6 7], shape=(6,), dtype=int32)
tf.convert_to_tensor
import tensorflow as tf
import numpy as np
py_scalar = 10
print("python integer")
print(py_scalar)
tensor_3 = tf.convert_to_tensor(py_scalar, dtype=tf.int32)
print("tensor from python integer")
print(tensor_3)
python integer
10
tensor from python integer
tf.Tensor(10, shape=(), dtype=int32)
Category: TensorFlow