Tanh activation function limits a real valued number to the range [-1, 1]. Its a non linear activation function with fixed output range.
tanh
activation function on
input x
produces output with function ((exp(x) - exp(-x))/(exp(x) + exp(-x)))
tf.keras.activations
module of tf.keras
api provides built-in activation to use,
refer following code to use tanh
activation function on tensors.
import tensorflow as tf
input = tf.random.normal([2,3])
output = tf.keras.activations.tanh(input)
print("Input")
print(input)
print("Output after applying tanh activation")
print(output)
Example output:
Input
tf.Tensor(
[[ 1.5365825 1.2561369 1.50169 ]
[-1.320414 -1.9326932 -1.5359558]], shape=(2, 3), dtype=float32)
Output after applying tanh activation
tf.Tensor(
[[ 0.9115443 0.84999555 0.9054532 ]
[-0.86688685 -0.9589505 -0.9114382 ]], shape=(2, 3), dtype=float32)
Similar Articles