For understating a Keras Model, it always good to have visual representation of model layers. In this article we will see how to display Keras Model architecture and save to a file.
tf.keras.utils
provides plot_model
function for
plotting and saving Model architecture to the file.
import tensorflow as tf
input = tf.keras.Input(shape=(100,), dtype='int32', name='input')
x = tf.keras.layers.Embedding(
output_dim=512, input_dim=1000, input_length=100)(input)
x = tf.keras.layers.LSTM(32)(x)
x = tf.keras.layers.Dense(64, activation='relu')(x)
output = tf.keras.layers.Dense(1, activation='sigmoid', name='output')(x)
model = tf.keras.Model(inputs=[input], outputs=[output])
img_file = './model_arch.png'
tf.keras.utils.plot_model(model, to_file=img_file, show_shapes=True, show_layer_names=True)
After executing above code snippets you should see image model_arch.png
in your current directory and below output on Jupyter Notebook
Similar Articles