tf.keras.Sequential
API. The functional API can handle models with non-linear topology, shared layers, and even multiple inputs or outputs.
Create an input node, having image input with a shape of (32, 32, 3)
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
img_inputs = keras.Input(shape=(32, 32, 3))
Create a new node in the graph of layers by calling a layer on input object from the previous step
dense = layers.Dense(64, activation="relu")
x = dense(inputs)
Add a few more layers to the graph of layers
x = layers.Dense(64, activation="relu")(x)
outputs = layers.Dense(10)(x)
Now create a Model by specifying its inputs and outputs
model = keras.Model(inputs=inputs, outputs=outputs, name="sample_model")
View the model summary
model.summary()
### Output ###
Model: "sample_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 784)] 0
_________________________________________________________________
dense (Dense) (None, 64) 50240
_________________________________________________________________
dense_1 (Dense) (None, 64) 4160
_________________________________________________________________
dense_2 (Dense) (None, 10) 650
=================================================================
Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0
_________________________________________________________________
Similar Articles