Formula for ReLU or Rectified Linear Unit is max(0,x)
.
With this formula ReLU returns element-wise maximum of 0 and the input tensor values.
relu
activation function takes
input x
and returns output as per the
the function max(0, x)
.
Refer below snippet to use relu activation
with tf.keras.activations
.
import tensorflow as tf
input = tf.random.normal([1,10], mean=3.0)
output = tf.keras.activations.relu(input)
print("Input")
print(input)
print("Output after applying relu activation")
print(output)
Example output:
Input
tf.Tensor(
[[4.8911924 3.7609506 1.6037421 2.8501108 2.3062882 3.580803 2.5677848
3.6137307 4.663064 4.5395136]], shape=(1, 10), dtype=float32)
Output after applying relu activation
tf.Tensor(
[[4.8911924 3.7609506 1.6037421 2.8501108 2.3062882 3.580803 2.5677848
3.6137307 4.663064 4.5395136]], shape=(1, 10), dtype=float32)
max_value
parameter
import tensorflow as tf
input = tf.random.normal([1,10], mean=1.0)
output = tf.keras.activations.relu(input, max_value=2)
print("Input")
print(input)
print("Output after applying relu with max_value paramter ")
print(output)
Example output:
Input
tf.Tensor(
[[2.8053546 1.8733189 1.9014599 2.320188 1.6549678 2.7530499 1.5154703
1.9352622 2.3958783 1.8461647]], shape=(1, 10), dtype=float32)
Output after applying relu with max_value parameter
tf.Tensor(
[[2. 1.8733189 1.9014599 2. 1.6549678 2. 1.5154703
1.9352622 2. 1.8461647]], shape=(1, 10), dtype=float32)
Similar Articles