softplus
activation function takes
input x
and returns output calculated
by function log(exp(x) + 1)
.
Refer below snippet to use softplus activation
with tf.keras.activations
.
import tensorflow as tf
input_softplus = tf.random.normal([1,7])
output_softplus = tf.keras.activations.softmax(input_softplus)
print("Input")
print(input_softplus)
print("Output after applying softplus activation")
print(output_softplus)
Example output:
Input
tf.Tensor(
[[ 0.39520025 -0.25938022 0.7229915 -0.5662393 0.30284765 0.44534028
0.6976337 ]], shape=(1, 7), dtype=float32)
Output after applying softplus activation
tf.Tensor(
[[0.15137178 0.07866186 0.21008877 0.0578758 0.13801831 0.15915506
0.20482835]], shape=(1, 7), dtype=float32)
Similar Articles