deserialize
method of
TensorFlow
tf.keras.activations
module
returns activation function for a given string identifier.
tf.keras.activations.deserialize(
name, custom_objects=None
)
name
: (Required) The name of the
activation function.
custom_objects
: (Optional) {function_name: function_obj} dictionary listing user-provided activation functions.
ValueError
:
tf.keras.activations.deserialize raises
Unknown activation function
if the input string does not denote
any defined Tensorflow activation function.
sigmoid
function using
deserialize
method
import tensorflow as tf
sigmoid_func = tf.keras.activations.deserialize('sigmoid')
print(help(sigmoid_func))
Help on function sigmoid in module keras.activations:
sigmoid(x)
Sigmoid activation function, `sigmoid(x) = 1 / (1 + exp(-x))`.
Applies the sigmoid activation function. For small values (<-5),
`sigmoid` returns a value close to zero, and for large values (>5)
the result of the function gets close to 1.
Sigmoid is equivalent to a 2-element Softmax, where the second element is
assumed to be zero. The sigmoid function always returns a value between
0 and 1.
For example:
>>> a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32)
>>> b = tf.keras.activations.sigmoid(a)
>>> b.numpy()
array([2.0611537e-09, 2.6894143e-01, 5.0000000e-01, 7.3105860e-01,
1.0000000e+00], dtype=float32)
Args:
x: Input tensor.
Returns:
Tensor with the sigmoid activation: `1 / (1 + exp(-x))`.
linear
function using
deserialize
method
import tensorflow as tf
linear_func = tf.keras.activations.deserialize('linear')
print(help(linear_func))
Help on function linear in module keras.activations:
linear(x)
Linear activation function (pass-through).
For example:
>>> a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
>>> b = tf.keras.activations.linear(a)
>>> b.numpy()
array([-3., -1., 0., 1., 3.], dtype=float32)
Args:
x: Input tensor.
Returns:
The input, unmodified.
Category: TensorFlow