TensorFlow | How to use tf.reduce_sum in TensorFlow

What is tf.reduce_sum?

tf.reduce_sum() is a fundamental TensorFlow operation that sums elements across dimensions of a tensor. Key features:

  • Reduces input tensor dimensions as specified by axis parameter
  • Returns a tensor with reduced dimensions
  • Essential for machine learning matrix operations and loss calculations

Basic Tensor Reduction Examples

Reduce entire tensor to scalar value:


import tensorflow as tf

# Create 1D tensor
tensor_1d = tf.constant([1, 2, 3])
sum_1d = tf.reduce_sum(tensor_1d)
print(sum_1d)  # Output: tf.Tensor(6, shape=(), dtype=int32)
                    

Sum elements in 2D tensor:


tensor_2d = tf.constant([[1, 2, 3], [2, 3, 5]])
sum_2d = tf.reduce_sum(tensor_2d)
print(sum_2d)  # Output: tf.Tensor(16, shape=(), dtype=int32)
                    

Understanding the Axis Parameter

The axis parameter controls reduction dimensions:

Sum Along Columns (axis=0)


tensor = tf.constant([[1, 2, 3], [2, 3, 5]])
col_sum = tf.reduce_sum(tensor, axis=0)
print(col_sum)  # Output: tf.Tensor([3 5 8], shape=(3,), dtype=int32)
                    

Sum Along Rows (axis=1)


row_sum = tf.reduce_sum(tensor, axis=1)
print(row_sum)  # Output: tf.Tensor([6 10], shape=(2,), dtype=int32)
                    

Performance Tips

  • Use keepdims=True to maintain tensor rank for broadcasting
  • Prefer integer tensors for faster computation
  • Combine with tf.function for graph-mode optimizations

Key Takeaways

  • tf.reduce_sum() is essential for dimensionality reduction
  • Axis parameter controls summation direction
  • Works with tensors of any rank

Category: TensorFlow

Latest Articles