TensorFlow | How to use tf.stack() in tensorflow

Understanding tf.stack()

The tf.stack() operation combines tensors along a new dimension, increasing rank by 1. Key features:

  • Requires identical shapes for input tensors
  • Creates new dimension specified by axis parameter
  • Essential for batch operations and neural network inputs

Creating Base Tensors

Generate random tensors and verify their properties:


import tensorflow as tf

# Create three 2x2 random tensors
tensor1 = tf.random.uniform(shape=[2,2], minval=3, maxval=5)
tensor2 = tf.random.uniform(shape=[2,2], minval=3, maxval=5)
tensor3 = tf.random.uniform(shape=[2,2], minval=3, maxval=5)

# Verify tensor properties
print(f"Tensor 1:\n{tensor1}\nRank: {tf.rank(tensor1)}\n")
print(f"Tensor 2:\n{tensor2}\nRank: {tf.rank(tensor2)}\n")
print(f"Tensor 3:\n{tensor3}\nRank: {tf.rank(tensor3)}")
                    

Sample output shows 2D tensors (rank 2) with shape (2,2)

Stacking Tensors with tf.stack()

Combine tensors along new dimension (axis=0):


# Stack tensors along first dimension
stacked_tensor = tf.stack(values=[tensor1, tensor2, tensor3], axis=0)

print("Stacked Tensor:")
print(stacked_tensor)
print(f"\nStacked Tensor Rank: {tf.rank(stacked_tensor)}")
print(f"Stacked Tensor Shape: {stacked_tensor.shape}")
                    

Resulting tensor has rank 3 with shape (3,2,2)

Axis Parameter Variations

Stacking Along Different Axes


# Stack along last dimension (axis=-1)
stacked_axis_minus1 = tf.stack([tensor1, tensor2], axis=-1)
                        

Shape becomes (2,2,2)

Visual Representation

Original Tensors (2x2) β†’ Stacked Along Axis:

  • 0: (3,2,2)
  • 1: (2,3,2)
  • 2: (2,2,3)

Best Practices for tf.stack()

  • Ensure identical shapes for all input tensors
  • Use axis=-1 for channel-wise stacking
  • Combine with tf.unstack() for reversible operations
  • Prefer tf.stack() over tf.concat() when creating new dimensions

Pro Tip: Real-World Application

Use tf.stack() to create batch dimensions:


# Convert list of single images to batch format
image_batch = tf.stack([img1, img2, img3], axis=0)
                

Category: TensorFlow

Latest Articles