This tutorial is with TF2.0, eager execution is by default enabled inTensorFlow2.0, if you are using earlier version of TensorFlow enable eager execution to follow this post.
TensorFlow Datasets is a collection of ready to use datasets for Text, Audio, image and many other ML applications. All datasets are exposed as tf.data. Datasets, enabling easy-to-use and high-performance input pipelines. In this post we will load famous "mnist" image dataset and will configure easy to use input pipeline. Run below code in either Jupyter notebook or in google Colab.
pip install tensorflow-datasets
import tensorflow as tf
import tensorflow_datasets as tfds
ds = tfds.load('mnist', split='train', shuffle_files=True)
# Build your input pipeline
ds = ds.shuffle(1024).repeat().batch(32)
for example in ds.take(1):
image, label = example['image'], example['label']
print(image.shape)
print(label)
for i in image:
plt.imshow(tf.squeeze(i))
plt.show()
import tensorflow as tf
import tensorflow_datasets as tfds
import matplotlib.pyplot as plt
# Construct a tf.data.Dataset
ds = tfds.load('mnist', split='train', shuffle_files=True)
# Build your input pipeline
ds = ds.shuffle(1024).repeat().batch(32)
for example in ds.take(1):
image, label = example['image'], example['label']
print(image.shape)
print(label)
for i in image:
plt.imshow(tf.squeeze(i))
plt.show()
Category: TensorFlow