For startups looking to integrate AI without massive infrastructure investments, Amazon Bedrock offers a fully managed solution to access cutting-edge foundation models (FMs) like Anthropic’s Claude and Amazon Titan. This tutorial walks you through building, optimizing, and deploying AI applications using Bedrock’s serverless architecture—perfect for teams with limited DevOps resources.
Objective: Enable Bedrock in your AWS account and request model access.
aws bedrock list-foundation-models --region us-east-1
Output should show approved models like
anthropic.claude-v2
.
Use Case: Create a text generation app with Python and Boto3.
import boto3
import json
bedrock = boto3.client(service_name='bedrock-runtime', region_name='us-east-1')
def generate_text(prompt):
body = json.dumps({
"prompt": f"\n\nHuman: {prompt}\n\nAssistant:",
"max_tokens_to_sample": 300,
"temperature": 0.5
})
response = bedrock.invoke_model(
modelId='anthropic.claude-v2',
body=body
)
return json.loads(response['body'].read())['completion']
print(generate_text("Explain quantum computing in 3 sentences:"))
Explanation: The temperature
parameter (0-1)
controls response creativity. Lower values yield precise answers—ideal for
factual startup use cases like customer support .
Why RAG? Enhance model responses with proprietary data (e.g., product docs or internal FAQs).
aws bedrock create-knowledge-base \
--name "StartupKB" \
--role-arn "arn:aws:iam::123456789012:role/AmazonBedrockExecutionRole" \
--storage-configuration '{"s3Configuration":{"bucketArn":"arn:aws:s3:::your-bucket"}}'
response = bedrock.retrieve_and_generate(
input={'text': 'What’s our refund policy?'},
retrieveAndGenerateConfiguration={
'knowledgeBaseConfiguration': {
'knowledgeBaseId': 'YOUR_KB_ID',
'modelArn': 'arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-v2'
}
}
)
Bedrock charges per token—use these strategies to minimize expenses:
aws cloudwatch get-metric-statistics \
--namespace AWS/Bedrock \
--metric-name InvocationCount \
--start-time 2025-02-01T00:00:00Z \
--end-time 2025-02-28T23:59:59Z \
--period 86400 \
--statistics Sum
Startups like FinTechCo saved $12k/month using these methods .
Combine Bedrock with AWS Lambda for auto-scaling:
import json
import boto3
def lambda_handler(event, context):
bedrock = boto3.client('bedrock-runtime')
prompt = event['queryStringParameters']['prompt']
response = bedrock.invoke_model(
modelId='anthropic.claude-v2',
body=json.dumps({"prompt": f"\n\nHuman: {prompt}\n\nAssistant:"})
)
return {
'statusCode': 200,
'body': json.loads(response['body'].read())['completion']
}
Deploy via AWS SAM or Terraform for zero server management. For complex workflows, orchestrate steps with AWS Step Functions .
Amazon Bedrock removes infrastructure barriers, letting startups focus on AI innovation. Explore advanced features:
For hands-on practice, try the AWS Bedrock Samples repository .
Category: AWS
Similar Articles