Amazon Bedrock Explained: Harnessing Foundation Models for AI Innovation Step-by-Step Guide

Introduction

Amazon Bedrock is a fully managed AWS service that democratizes access to cutting-edge foundation models (FMs) like Anthropic’s Claude, AI21 Labs’ Jurassic-2, and Amazon Titan. This guide walks you through using Bedrock to build AI applications without managing infrastructure. We’ll include code examples, cost-saving tips, and real-world use cases.

Prerequisites

  • An AWS account with Bedrock access (request via AWS console)
  • Basic Python and AWS CLI knowledge
  • IAM permissions for Bedrock and S3

Step 1: Enable Bedrock and Request Model Access

1. Navigate to the AWS Bedrock Console.
2. Click Request Model Access and select models (e.g., Claude-v2).
3. Wait for AWS approval (usually instant for trial models).

# Verify access via AWS CLI
  aws bedrock list-foundation-models --region us-east-1
  
  # Expected output snippet:
  {
      "modelSummaries": [
          {
              "modelId": "anthropic.claude-v2",
              "providerName": "Anthropic"
          }
      ]
  }

Explanation: This CLI command lists available models. Ensure your IAM role has bedrock:ListFoundationModels permission.

Step 2: Run Your First Inference with Claude

Use the boto3 SDK to generate text:

import boto3
  import json
  
  bedrock = boto3.client(service_name='bedrock-runtime', region_name='us-east-1')
  
  prompt = "Explain quantum computing in 3 sentences:"
  body = json.dumps({
      "prompt": f"\n\nHuman: {prompt}\n\nAssistant:",
      "max_tokens_to_sample": 300,
      "temperature": 0.5
  })
  
  response = bedrock.invoke_model(
      modelId='anthropic.claude-v2',
      body=body
  )
  
  response_body = json.loads(response['body'].read())
  print(response_body['completion'])

Explanation: This code sends a prompt to Claude-v2. The temperature parameter controls creativity (0 = precise, 1 = random).

Step 3: Build a Translation App with Amazon Titan

Titan’s multilingual model supports 100+ languages:

def translate_text(text, target_language="Spanish"):
      body = json.dumps({
          "inputText": text,
          "sourceLanguageCode": "auto",
          "targetLanguageCode": target_language.lower()
      })
  
      response = bedrock.invoke_model(
          modelId='amazon.titan-text-express-v1',
          body=body
      )
      return json.loads(response['body'].read())['results'][0]['outputText']
  
  print(translate_text("Hello, world!", "French"))  # Output: "Bonjour le monde!"

Tip: Use amazon.titan-embed-text-v1 for semantic search and embeddings.

Step 4: Process Files at Scale with S3 Integration

Analyze a CSV file stored in S3:

s3 = boto3.client('s3')
  
  # Download file from S3
  s3.download_file('my-bucket', 'input.csv', 'local_input.csv')
  
  with open('local_input.csv', 'r') as f:
      questions = f.readlines()
  
  # Generate answers for each question
  answers = [bedrock.invoke_model(
      modelId='anthropic.claude-v2',
      body=json.dumps({"prompt": f"\n\nHuman: {q.strip()}\n\nAssistant:"})
  ) for q in questions[:5]]  # Limit to 5 for testing

Cost Note: Bedrock charges per token. Use batch processing judiciously.

Step 5: Monitor and Optimize Costs

1. Set up AWS Budgets alerts for Bedrock.
2. Use shorter prompts and adjust max_tokens_to_sample.
3. Delete unnecessary model endpoints.

# Check usage via AWS CLI
  aws cloudwatch get-metric-statistics \
      --namespace AWS/Bedrock \
      --metric-name InvocationCount \
      --start-time 2023-10-01T00:00:00Z \
      --end-time 2023-10-31T23:59:59Z \
      --period 86400 \
      --statistics Sum

Conclusion

Amazon Bedrock removes the complexity of deploying foundation models. You’ve learned to generate text, translate languages, and process batch data. Next, explore AWS’s advanced features like guardrails for content filtering and model customization.


Category: AWS

Trending
Latest Articles