In modern software development, comprehensive testing remains a critical challenge. This tutorial demonstrates how to combine DeepSeek's intelligence with pytest's testing framework to generate robust unit tests automatically.
Set up your testing environment with these essential packages:
# Install core dependencies
!pip install pytest deepseek-ai transformers pytest-cov mock
# Verify installation
import pytest
print(f"pytest version: {pytest.__version__}")
python -m venv testenv && source testenv/bin/activate
Create a test generator module:
# test_generator.py
from transformers import AutoTokenizer, AutoModelForCausalLM
class TestGenerator:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1")
self.model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1")
def generate_test(self, function_code: str) -> str:
prompt = f"""Generate pytest unit tests for this Python function:
{function_code}
Follow these requirements:
1. Use parameterized testing
2. Include edge cases
3. Add type annotations
4. Include descriptive docstrings"""
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=1024)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
Create a simple calculator module to test:
# calculator.py
def add(a: float, b: float) -> float:
return a + b
def subtract(a: float, b: float) -> float:
return a - b
Automate the test lifecycle:
# Generate tests
generator = TestGenerator()
with open("calculator.py") as f:
tests = generator.generate_test(f.read())
# Save generated tests
with open("test_calculator.py", "w") as f:
f.write(tests)
# Run tests with pytest
!pytest test_calculator.py -v --cov=calculator
Implement mock testing with AI-generated scenarios:
# test_database.py
from unittest.mock import Mock
import pytest
def test_db_connection():
# AI-generated test scenario
mock_db = Mock()
mock_db.connect.return_value = True
assert mock_db.connect("localhost:5432") is True
mock_db.connect.assert_called_once_with("localhost:5432")
Add automated testing to GitHub Actions:
# .github/workflows/tests.yml
name: AI-Powered Tests
on: [push]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
pip install -r requirements.txt
- name: Generate tests
run: python generate_tests.py
- name: Run tests
run: pytest --cov=src/ --cov-report=xml
Test a Flask API endpoint with generated tests:
# test_api.py
import pytest
from myapp import create_app
@pytest.fixture
def client():
app = create_app()
with app.test_client() as client:
yield client
def test_homepage(client):
"""Test homepage response (AI-generated)"""
response = client.get('/')
assert response.status_code == 200
assert b"Welcome" in response.data
By integrating DeepSeek-R1 with pytest, developers can achieve comprehensive test coverage while reducing manual effort. Remember that AI-generated tests should complement - not replace - human testing expertise. Regular review and refinement of generated tests ensures they remain effective as your codebase evolves.
Category: deepseek
Similar Articles