Why Gemini 2.0 Flash?
Google's Gemini 2.0 Flash represents a leap in AI capabilities, combining speed, multimodal understanding, and experimental tools like real-time streaming and native image generation. This tutorial covers:
- Setup and authentication
- Multimodal Live API for voice/video interactions
- Google Search integration as a tool
- Image generation and boundary box detection
1. Getting Started
Installation
pip install google-genai
API Configuration
from google import genai
# For Gemini Developer API
client = genai.Client(api_key="YOUR_API_KEY")
# For Vertex AI (Cloud users)
client = genai.Client(
vertexai=True,
project="YOUR_CLOUD_PROJECT",
location="us-central1"
)
2. Real-Time Interactions with Multimodal Live API
This experimental feature enables bidirectional audio/video streaming with sub-second latency.
Basic Text Chat Example
async def live_chat():
async with client.aio.live.connect(
model="gemini-2.0-flash-exp",
config={"response_modalities": ["TEXT"]}
) as session:
await session.send("Explain quantum computing basics", end_of_turn=True)
async for response in session.receive():
print(response.text)
# Run in Jupyter or with asyncio
import asyncio
asyncio.run(live_chat())
Key Features
- 15-minute audio sessions / 2-minute video sessions
- Voice interruption support
- 6 predefined voice personas
3. Enhancing Accuracy with Google Search
Integrate real-time web data into responses
from google import genai
from google.genai.types import Tool, GenerateContentConfig, GoogleSearch
client = genai.Client(api_key="YOUR_API_KEY", http_options={'api_version': 'v1alpha'})
model_id = "gemini-2.0-flash-exp"
config = {"response_modalities": ["TEXT"]}
google_search_tool = Tool(
google_search = GoogleSearch()
)
response = client.models.generate_content(
model=model_id,
contents="What are new LLMs expected to be released in 2025?",
config=GenerateContentConfig(
tools=[google_search_tool],
response_modalities=["TEXT"],
)
)
for each in response.candidates[0].content.parts:
print(each.text)
print(response.candidates[0].grounding_metadata.search_entry_point.rendered_content)
4. Experimental Image Generation
Create and edit images through natural language
# Text-to-image with watermark
response = client.models.generate_content(
model="gemini-2.0-flash-exp",
contents="Generate a image of running tiny robot",
config={
"response_modalities": ["IMAGE"],
"safety_settings": {"HARM_CATEGORY_VISUAL": "BLOCK_ONLY_HIGH"}
}
)
# Save generated image
if response.images:
with open("robot_gardening.png", "wb") as f:
f.write(response.images[0].image_data)
Limitations
- No human image generation
- Requires explicit prompts (e.g., "Generate image...")
- Supports 5 languages including English and Japanese
5. Object Detection with Boundary Boxes
Locate objects in images using natural language prompts
from PIL import Image
# Load image
with open("kitchen.jpg", "rb") as img_file:
img_data = img_file.read()
response = client.models.generate_content(
model="gemini-2.0-flash-exp",
contents=[
"Find all electrical appliances",
genai.Image(image_data=img_data)
]
)
# Process boundary boxes [y_min, x_min, y_max, x_max]
for box in response.boundary_boxes:
print(f"Object: {box.label}")
print(f"Coordinates: {box.coordinates}")
print(f"Confidence: {box.confidence:.2%}")
6. Transparent Reasoning with Flash Thinking
See the model's thought process
client = genai.Client(
api_key="YOUR_KEY",
http_options={"api_version": "v1alpha"}
)
response = client.models.generate_content(
model="gemini-2.0-flash-thinking-exp",
contents="Solve 3x² + 2x - 5 = 0",
config={"thinking_config": {"include_thoughts": True}}
)
for part in response.candidates[0].content.parts:
if part.thought:
print(f"THINKING: {part.text}")
else:
print(f"ANSWER: {part.text}")
7. Professional Tips for Experimentation
- Use
temperature=0.2-0.5
for technical tasks - Monitor API usage via Google Cloud Console
- Combine tools: Search + Code Execution + Image Gen
Official resources: Google AI Developers | Starter Projects