This tutorial demonstrates how to build an adaptive math tutor using DeepSeek-R1's reasoning capabilities combined with Python's educational toolkit. Our AI tutor will feature problem generation, step-by-step explanations, and progress tracking.
Our tutor combines multiple components:
Math Tutor System Components:
1. Problem Generator - Creates age-appropriate math questions
2. Solution Validator - Checks student answers
3. Explanation Engine - Provides step-by-step solutions
4. Progress Tracker - Monitors learning patterns
5. Adaptive Engine - Adjusts difficulty dynamically
Install required packages:
# Install core dependencies
!pip install transformers sympy numpy gradio
Implement the mathematical reasoning backbone:
from transformers import AutoTokenizer, AutoModelForCausalLM
import sympy as sp
class MathEngine:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B")
self.model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B")
self.x = sp.Symbol('x')
def solve_equation(self, problem: str) -> dict:
# Symbolic computation
equation = sp.sympify(problem.split("=")[0] + "-(" + problem.split("=")[1] + ")")
solution = sp.solve(equation, self.x)
# AI explanation
prompt = f"Explain the solution for {problem} step by step:"
inputs = self.tokenizer(prompt, return_tensors="pt")
explanation = self.model.generate(**inputs, max_length=500)
return {
"problem": problem,
"solution": solution,
"explanation": self.tokenizer.decode(explanation[0], skip_special_tokens=True)
}
Create a web interface using Gradio:
import gradio as gr
engine = MathEngine()
def tutor_interface(problem: str, grade_level: int):
result = engine.solve_equation(problem)
return f"""
**Solution:** {result['solution']}
**Explanation:** {result['explanation']}
"""
iface = gr.Interface(
fn=tutor_interface,
inputs=[
gr.Textbox(label="Enter math problem", placeholder="2x + 5 = 15"),
gr.Slider(6, 12, label="Grade Level")
],
outputs="markdown",
title="AI Math Tutor"
)
iface.launch()
Implement difficulty adjustment logic:
import numpy as np
class AdaptiveEngine:
def __init__(self):
self.skill_level = 1.0
self.performance_history = []
def update_difficulty(self, correct: bool):
self.performance_history.append(correct)
window = self.performance_history[-10:]
success_rate = np.mean(window)
if success_rate > 0.8:
self.skill_level = min(self.skill_level * 1.2, 5.0)
elif success_rate < 0.4:
self.skill_level = max(self.skill_level * 0.8, 0.5)
return self.generate_problem()
def generate_problem(self):
base_problems = {
1: "x + 5 = 10",
2: "2x - 3 = 7",
3: "x² - 4 = 0",
4: "3x + 2y = 12",
5: "sin(x) = 0.5"
}
return base_problems.get(int(np.round(self.skill_level)), "x + 1 = 3")
Implement student progress monitoring:
import sqlite3
from datetime import datetime
class ProgressTracker:
def __init__(self):
self.conn = sqlite3.connect('math_tutor.db')
self._create_tables()
def _create_tables(self):
self.conn.execute('''CREATE TABLE IF NOT EXISTS students
(id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
level INTEGER DEFAULT 1)''')
def record_session(self, student_id: int, problem: str, correct: bool):
self.conn.execute('''INSERT INTO sessions
(student_id, problem, correct, timestamp)
VALUES (?, ?, ?, ?)''',
(student_id, problem, int(correct), datetime.now()))
self.conn.commit()
Containerize the application with Docker:
# Dockerfile
FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["python", "tutor_web.py"]
model = model.half().to("cuda")
This tutorial demonstrates how DeepSeek-R1's reasoning capabilities can be used to create personalized learning experiences.
Category: deepseek
Similar Articles