resnet
model using Pytorch hub.
Import required libraries and download the pre-trained resnet18
model
import torch
import urllib
from PIL import Image
from torchvision import transforms
model = torch.hub.load('pytorch/vision:v0.9.0', 'resnet152', pretrained=True)
Set the model in evaluation mode.
model.eval()
Download sample image
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try:
urllib.URLopener().retrieve(url, filename)
except:
urllib.request.urlretrieve(url, filename)
Preprocess the downloaded image to pass as a input to the pre-trained resnet18
model
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
Check GPU availability
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
Get the inference with disabling gradient calculation
with torch.no_grad():
output = model(input_batch)
Get the probabilities using softmax
from unnormalized scores in output
probabilities = torch.nn.functional.softmax(output[0], dim=0)
Download ImageNet labels and store in python list
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
print(categories)
Get top 5 probabilities and labels using torch.topk
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
Category: PyTorch